
1

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name
Declarative programming [S1Inf1>PDEK]

Course
Field of study
Computing

Year/Semester
1/2

Area of study (specialization)
–

Profile of study
general academic

Level of study
first-cycle

Course offered in
Polish

Form of study
full-time

Requirements
compulsory

Number of hours
Lecture
16

Laboratory classes
16

Other (e.g. online)
0

Tutorials
0

Projects/seminars
0

Number of credit points
2,00

Coordinators
dr inż. Artur Michalski
artur.michalski@put.poznan.pl

Lecturers

Prerequisites
The student starting this course should have basic knowledge of computational logic and set theory. He 
should have the ability to solve basic algorithmic problems described by means of a formal mathematical 
apparatus and the ability to obtain information on how to solve them from the indicated sources.

Course objective
Provide students with basic knowledge about the declarative programming paradigm on the example of the 
Prolog language. Developing students" skills in solving algorithmic problems using a high-level 
programming language based on recursion mechanisms and searching solution space. Shaping students" 
awareness of the differences between the declarative paradigm and other programming paradigms.

Course-related learning outcomes
Knowledge:
1. The Student has a structured and theoretically founded general knowledge of programming
languages and paradigms as well as procedural and declarative interpretation of the program code.
2. The student has a basic knowledge of the functioning of automatic inference mechanisms in
declarative languages based on computational logic.



2

3. The student knows the basic methods, techniques and tools used in solving computer tasks using
recursive data structures and their implementation in declarative programming languages.
4. The student has elementary knowledge of methods of metaprogramming, processing symbolic
representation of data and knowledge.

Skills:
1. The student can assess the usefulness of languages, methods and tools for solving tasks typical for
computer science, and indicate the appropriate areas of application of the methods and programming
tools of the declarative paradigm.
2. The student has the ability to formulate algorithms and implement it in the field of symbolic
processing and textual tasks.
3. The student can develop and implement a solution to a programming problem in terms of the
declarative paradigm using simple and complex (recursive) data structures.

Social competences:
1. The student understands the need to constantly expand their knowledge and improve skills in the
field of programming tools and developing programming paradigms.
2. The student is able to think and act creatively, remaining open to non-IT aspects of the activity of an
IT engineer related to software development.

Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:
Learning outcomes presented above are verified as follows:
Verification of assumed learning objectives related to lectures: evaluation of knowledge by test in a
form of 20 questions worth of 20 points in total. Positive grade is obtained by acquiring more than 10
points.
Verification of assumed learning objectives related to laboratory classes by a test at the end of the
semester, consisting in solving a specific programming problem; the task being the subject of the test is
a multi-stage algorithm, and obtaining a positive grade is possible after correctly implementing more
than half of all its steps that make up the complete final solution and demonstrating the ability to
construct one's own (genuine) components of the solution; some of the steps of the correct solution
include the methods presented during the semester, however, the student must first of all demonstrate
originality in solving the task in order to obtain the final credit; this criterion is considered the key in the
evaluation of the final work.

Programme content
Declarative and procedural interpretation of the Prolog program
Recursive definition of the rule
Data representation in Prolog
Term unification
Relations between Prolog and formal logic
Representation of lists in the Prolog
Arithmetic operations in the Prolog
Processing flow control in Prolog
Negation by failure
Meta-predicates in Prolog
Efficiency of Prolog programs

Course topics
Lecture 1: Introduction to the Prolog language
- An example of a simple program in Prolog: Family relationships
- Extending the program by introducing rules
- Recursive definition of the rule
- Generating answers to the Prolog questions
- Declarative and procedural interpretation of the Prolog program
Lecture 2: Syntax structure and interpretation of Prolog programs
- Data representation in Prolog



3

- Term unification
- Formal declarative interpretation of the Prolog program
- Formal procedural interpretation of the Prolog program
- Program interpretation example: The monkey and banana problem
- Order of Prolog clauses and goals
- Relations between Prolog and formal logic
Lecture 3: Lists, operators and arithmetic operations
- Representation of lists in the Prolog
- Selected operations on lists in the Prolog
- Operator notation
- Arithmetic operations in the Prolog
Lecture 4: Processing flow control in Prolog
- Cuts in Prolog
- Examples of using cuts in a Prolog program
- Negation by failure
- Problems with cuts and negation in the Prolog
Lecture 5: Predefined Prolog predicates - meta-predicates
- Checking the type of term
- Term composition and decomposition: = .., functor, arg, name
- Different types of equality operations in the Prolog
- Database manipulation in Prolog
- Manipulating the control flow in the Prolog
- Predicates: bagof, setof and findall
Lecture 6: Input / output operations in Prolog
- File operations in Prolog
- Processing files of terms
- Manipulating character data
- Composition and decomposition of atoms
- Loading Prolog programs: consult and reconsult
Lecture 7: Style and programming techniques in Prolog
- General rules of correct programming in Prolog
- How to interpret Prolog programs?
- Programming style in Prolog
- Efficiency of Prolog programs
The program of the laboratory classes corresponds to the program of the lecture with the exception of
the input/output operations on files.

Teaching methods
1. Lecture: multimedia presentation, including examples of problem solutions
2. Laboratory classes: implementation of practical programming tasks of increasing difficulty

Bibliography
Basic
1. Prolog. Programowanie, W.F. Clocksin, C.S. Mellish, Helion, Gliwice, 2003
2. Logika w rozwiązywaniu zadań, R.A. Kowalski, WNT, Warszawa, 1989
Additional
1. Prolog - programming for AI, I. Bratko, Addison-Wesley, 1990
2. Micro-Prolog, K.L. Clark, F.G. McGabe, WNT, Warszawa, 1985
3. Prolog, F. Kluźniak, S. Szpakowicz, WNT, Warszawa, 1983

Breakdown of average student's workload

Hours ECTS

Total workload 60 2,00

Classes requiring direct contact with the teacher 32 1,00

Student's own work (literature studies, preparation for laboratory classes/
tutorials, preparation for tests/exam, project preparation)

28 1,00


